
Supplementary information
In this supplementary information we provide proofs for some technical statements that are used in the
main document.

8 General facts about the fidelity

The following lemma states a standard concavity property of the fidelity which is presented here for
completeness and since we are interested in the case where equality holds.

Lemma 8.1. For any density operators ρ, ρ′, σ, and σ′, and for any p ∈ [0, 1] we have

F
(
pρ+ (1− p)ρ′, pσ + (1− p)σ′

)
≥ pF (ρ, σ) + (1− p)F (ρ′, σ′) , (S.1)

with equality if both of ρ and σ are orthogonal to both of ρ′ and σ′.

Proof. Note first that for any two normalized and mutually orthogonal vectors |0〉 and |1〉 in an ancilla
space, we have

F
(
pρ+(1−p)ρ′, pσ+(1− p)σ′

)
≥ F

(
pρ⊗|0〉〈0|+(1−p)ρ′⊗|1〉〈1|, pσ⊗|0〉〈0|+ (1− p)σ′⊗|1〉〈1|

)
, (S.2)

because of the monotonicity of the fidelity under the partial trace. Furthermore, if both of ρ and σ
are orthogonal to both of ρ′ and σ′ then there exists a trace-preserving completely positive map that
generates the corresponding state |0〉 or |1〉 of the ancilla system. This implies that, in this case, the
inequality also holds in the other direction. It therefore suffices to prove (S.1) with ρ and σ replaced by
ρ⊗ |0〉〈0| and σ ⊗ |0〉〈0|, and with ρ′ and σ′ replaced by ρ′ ⊗ |1〉〈1| and σ′ ⊗ |1〉〈1|, respectively. In other
words, it remains to show that, for the case where ρ and σ are orthogonal to ρ′ and σ′, (S.1) holds with
equality, i.e.,

F (ρ̄, σ̄) = pF (ρ, σ) + (1− p)F (ρ′, σ′) , (S.3)

where ρ̄ = pρ+ (1− p)ρ′ and σ̄ = pσ + (1− p)σ′.
For this, let |φ〉, |φ′〉, |ψ〉, and |ψ′〉 be purifications of ρ, ρ′, σ, and σ′, respectively, such that

F (ρ, σ) = 〈φ|ψ〉 and F (ρ′, σ′) = 〈φ′|ψ′〉. It is easy to verify that

|φ̄〉 =
√
p|φ〉 ⊗ |0〉+

√
1− p|φ′〉 ⊗ |1〉 and |ψ̄〉 =

√
p|ψ〉 ⊗ |0〉+

√
1− p|ψ′〉 ⊗ |1〉 (S.4)

are purifications of ρ̄ and of σ̄, respectively. Hence,

pF (ρ, σ) + (1− p)F (ρ′, σ′) = p〈φ|ψ〉+ (1− p)〈φ′|ψ′〉 = 〈φ̄|ψ̄〉 ≤ F (ρ̄, σ̄) , (S.5)

which proves one direction of (S.3).
To prove the other direction, let π be the projector onto the joint support of ρ and σ, i.e., πρ = ρ

and πσ = σ. Similarly, let π′ be the projector onto the joint support of ρ′ and σ′, i.e,. π′ρ′ = ρ′ and
π′σ′ = σ′. By the condition that ρ and σ are orthogonal to ρ′ and σ′, the two projectors must be
orthogonal, i.e., ππ′ = 0. Furthermore, let |φ̄〉 be a purification of ρ̄ and let |ψ̄〉 be a purification of σ̄
such that F (ρ̄, σ̄) = 〈φ̄|ψ̄〉. Because

pρ = πρ̄π and (1− p)ρ′ = π′ρ̄π′ (S.6)

π|φ̄〉 and π′|φ̄〉 are purifications of pρ and (1− p)ρ′, respectively. Similarly, π|ψ̄〉 and π′|ψ̄〉 are purifica-
tions of pσ and (1− p)σ′, respectively. Hence, we have

F (ρ̄, σ̄) = 〈φ̄|ψ̄〉 = 〈φ̄|π|ψ̄〉+ 〈φ̄|π′|ψ̄〉 ≤ F
(
pρ, pσ

)
+ F

(
(1− p)ρ′, (1− p)σ′

)
= pF (ρ, σ) + (1− p)F (ρ′, σ′) . (S.7)

This proves the other direction of (S.3) and thus concludes the proof.
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The following lemma generalizes the Fuchs-van de Graaf inequality which has been proven for states
to non-negative operators. The result is standard and stated here for completeness.

Lemma 8.2. For any two non-negative operators ρ and σ with tr(ρ) ≥ tr(σ), the trace norm of their
difference is bounded from above by

‖ρ− σ‖1 ≤ 2
√

tr(ρ)2 − F (ρ, σ)2 . (S.8)

Proof. Let ω be a non-negative operator with tr(ω) = tr(ρ)− tr(σ), whose support is orthogonal to the
support of both ρ and σ, and define σ′ = σ + ω. Then tr(ρ) = tr(σ′) and

‖ρ− σ‖1 = ‖ρ− σ′‖1 and F (ρ, σ) = F (ρ, σ′) . (S.9)

It therefore suffices to show that the claim holds for operators with tr(ρ) = tr(σ) = c ∈ R+. Furthermore
for c > 0, defining ρ̄ = ρ/c and σ̄ = σ/c and noting that

‖ρ− σ‖1 = c ‖ρ̄− σ̄‖1 and F (ρ, σ) = cF (ρ̄, σ̄) , (S.10)

it suffices to verify that the claim holds for tr(ρ) = tr(σ) = 1 which follows by the Fuchs-van de Graaf
inequality [FvdG99].

9 General facts about the measured relative entropy

Definition 9.1. The measured relative entropy between density operators ρ and σ is defined as the
supremum of the relative entropy with measured inputs over all POVMs M = {Mx}, i.e.,

DM(ρ||σ) = sup
{
D(M(ρ)||M(σ)) :M(ρ) =

∑
x

tr(ρMx)|x〉〈x| with
∑
x

Mx = id
}
, (S.11)

where {|x〉} is a finite set of orthonormal vectors.

This quantity was studied in [HP91, Hay01] where it was shown that 1
nDM(ρ⊗n||σ⊗n) converges to

the relative entropy D(ρ||σ) := tr(ρ(log ρ− log σ)).

Lemma 9.2. Let ρ, ρ′, σ, and σ′ be density operators such that both ρ and σ are orthogonal to both ρ′

and σ′. For any p ∈ [0, 1] we have

D
(
pρ+ (1− p)ρ′ || pσ + (1− p)σ′

)
= pD(ρ||σ) + (1− p)D(ρ′||σ′) . (S.12)

Proof. By the orthogonality of ρ and ρ′ (respectively σ and σ′) we have

log
(
pρ+ (1− p)ρ′

)
= log(pρ) + log

(
(1− p)ρ′

)
= log(p) + log(1− p) + log(ρ) + log(ρ′) (S.13)

and ρ log ρ′ = 0. Thus by definition of the relative entropy we obtain the desired statement.

Lemma 9.3. Let ρ, ρ′, σ, and σ′ be density operators such that both ρ and σ are orthogonal to both ρ′

and σ′. For any p ∈ [0, 1] we have

DM
(
pρ+ (1− p)ρ′ || pσ + (1− p)σ′

)
= pDM(ρ||σ) + (1− p)DM(ρ′||σ′) . (S.14)

Proof. Let M = {Mx}, M′ = {M ′y} be measurements and define the POVM on N whose elements are
given by {Mx}x ∪ {M ′y}y. Then we can write

N
(
pρ+ (1− p)ρ′

)
= p

∑
x

tr(Mxρ)|x〉〈x|+ (1− p)
∑
y

tr(M ′yρ
′)|y〉〈y| . (S.15)
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As a result using Lemma 9.2,

DM
(
pρ+ (1− p)ρ′ || pσ + (1− p)σ′

)
≥ D

(
N
(
pρ+ (1− p)ρ′

) ∣∣∣∣∣∣N (pσ + (1− p)σ′
))

= pD
(∑

x

tr(Mxρ)|x〉〈x|
∣∣∣∣∣∣∑

x

tr(Mxσ)|x〉〈x|
)

+ (1− p)D
(∑

y

tr(M ′yρ
′)|y〉〈y|

∣∣∣∣∣∣∑
y

tr(M ′yσ
′)|y〉〈y|

)
.

(S.16)

As this inequality is valid for any measurements M and M′, taking the supremum over such measure-
ments gives

DM
(
pρ+ (1− p)ρ′ || pσ + (1− p)σ′

)
≥ pDM(ρ||σ) + (1− p)DM(ρ′||σ′) . (S.17)

For the other direction, consider a measurement M = {Mx}. We can write

M
(
pρ+ (1− p)ρ′

)
=
∑
x

p tr(Mxρ)|x〉〈x|+ (1− p) tr(Mxρ
′)|x〉〈x| . (S.18)

Combining this with the joint convexity of the relative entropy [NC00, Theorem 11.12], we get

DM
(
pρ+ (1− p)ρ′ || pσ + (1− p)σ′

)
= D

(
M
(
pρ+ (1− p)ρ′

)∣∣∣∣∣∣M(pσ + (1− p)σ′
))

≤ pD
(∑

x

tr(Mxρ)|x〉〈x|
∣∣∣∣∣∣∑

x

tr(Mxσ)|x〉〈x|
)

+ (1− p)D
(∑

x

tr(Mxρ
′)|x〉〈x|

∣∣∣∣∣∣∑
x

tr(Mxσ
′)|x〉〈x|

)
≤ pDM(ρ||σ) + (1− p)DM(ρ′||σ′) . (S.19)

Lemma 9.4. For density operators ρ, σ, and σ′ and p ∈ [0, 1] the measured relative entropy satisfies

DM
(
ρ||pσ + (1− p)σ′

)
≤ pDM(ρ||σ) + (1− p)DM(ρ||σ′) . (S.20)

Proof. For any measurement M,

D
(
M(ρ)||M(pσ + (1− p)σ′)

)
= D

(
M(ρ)|| pM(σ) + (1− p)M(σ′)

)
≤ pD

(
M(ρ)||M(σ)

)
+ (1− p)D

(
M(ρ)||M(σ′)

)
≤ pDM(ρ||σ) + (1− p)DM(ρ||σ′) , (S.21)

where the first inequality step uses the convexity of the relative entropy [NC00, Theorem 11.12]. Taking
the supremum over M, we get the desired result.

10 Basic topological facts

For completeness we state here some standard topological facts about density operators and trace-
preserving completely positive maps.

Lemma 10.1. Let α ∈ R+. The space of non-negative operators on a finite-dimensional Hilbert space
E with trace smaller or equal to α (respectively equal to α) is compact.

Proof. Let D′(E) := {ρ ∈ Pos(E) : tr(ρ) ≤ α} denote the set non-negative operators on E with
trace not larger than one, where Pos(E) is the set of non-negative operators on E. Consider the ball
B := {e ∈ E : ‖e‖ ≤ α} which is compact. The function B 3 e 7→ f(e) = ee† ∈ D′(E) is continuous and
thus the set f(B) = {ee† : e ∈ E, ‖e‖ ≤ α} is compact, as continuous functions map compact sets to
compact sets. By the spectral theorem it follows that D′(E) = convf(B). As the convex hull of every
compact set is compact this proves the assertion. The same argumentation (by replacing the inequalities
with equalities) proves that the set of non-negative operators on E with trace α is compact.
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Lemma 10.2. Let E, G be finite-dimensional Hilbert spaces and let σG ∈ Pos(G). The space of non-
negative operators on E ⊗G with a marginal on G smaller or equal to σG (respectively equal to σG) is
compact.

Proof. Let σG ∈ Pos(G). By Lemma 10.1, the set of non-negative operators on E ⊗ G with trace not
larger than α ∈ R+ is compact. The set {X ∈ E ⊗ G : trE(X) ≤ ρG} is closed. The intersection of
a compact set and a closed set is compact which implies that {X ∈ Pos(E ⊗ G) : trE(X) ≤ ρG} is
compact. Since the set {X ∈ E ⊗ G : trE(X) = ρG} is closed the same argumentation shows that
{X ∈ Pos(E ⊗G) : trE(X) = ρG} is compact.

Remark 10.3. Let E and G be two finite-dimensional Hilbert spaces. The space of trace-non-increasing
(respectively trace-preserving) completely positive maps from E to G is compact. To see this note that
Lemma 10.2 implies that the set F := {X ∈ Pos(E ⊗ G) : trG(X) ≤ idE} is compact. By the Choi-
Jamiolkowski representation F is however isomorphic to the set of all trace-non-increasing completely
positive maps from E to G. The same argumentation applied to the set F := {X ∈ Pos(E ⊗ G) :
trG(X) = idE} shows that the set of trace-preserving completely positive maps from E to G is compact.

Lemma 10.4. Let G and K be finite-dimensional Hilbert spaces and let σEGK ∈ D(E ⊗G⊗K). The
mapping TPCP(G,G⊗K) 3 R 7→ F (σEGK ,RG→GK(σEGK)) ∈ [0, 1] is continuous.

Proof. This follows directly from the continuity of R 7→ RG→GK(σEG) and the continuity of the fidelity
(see, e.g., Lemma B.9 of [FR14]).

Lemma 10.5. Let E, G, and K be separable Hilbert spaces and R ∈ TPCP(G,K). Then the mapping
D(E ⊗G) 3 X 7→ IE ⊗RG→K(XEG) ∈ D(E ⊗K) is continuous.

Proof. As the map is linear it suffices to show that it is bounded. For that we can decompose X = P−N
with P and N orthogonal non-negative operators. Then we have

‖IE ⊗RG→K(X)‖1 ≤ ‖IE ⊗RG→K(P )‖1 + ‖IE ⊗RG→K(N)‖1 = tr(P ) + tr(N) = ‖X‖1 . (S.22)

11 Touching sets lemma

We prove here a basic fact that is used in the proof of Theorem 2.1.

Lemma 11.1. Let K0 and K1 be two sets such that K0 ∪K1 = [0, 1] and 0 ∈ K0, 1 ∈ K1. Then for
any δ > 0 there exists u ∈ K0 and v ∈ K1 such that 0 ≤ v − u ≤ δ.

Proof. We define µ := inf K1 and distinguish between the two cases µ ∈ K0 and µ 6∈ K0.
If µ ∈ K0, it suffices to show that for any δ > 0 we have [µ, µ+ δ]∩K1 6= ∅, since by choosing u = µ

this implies that u ∈ K0 and that there exists a v ∈ [µ, µ + δ] such that v ∈ K1. By contradiction, we
assume that [µ, µ+δ]∩K1 = ∅. This implies that either inf K1 < µ or inf K1 ≥ µ+δ, which contradicts
µ := inf K1.

If µ 6∈ K0 it suffices to show that for any δ > 0 we have [µ − δ, µ] ∩ K0 6= ∅, since by choosing
v = µ this ensures that v ∈ K1 and that there exists a u ∈ [µ − δ, µ] such that u ∈ K0. Assume by
contradiction that [µ − δ, µ] ∩ K0 = ∅, which implies that [µ − δ, µ] ⊂ K1. This however contradicts
µ := inf K1.
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12 Properties of projected states

We first prove variant of the gentle measurement lemma [Win99], which is used repeatedly in the proof
of Theorem 2.1.

Lemma 12.1. Let E and G be separable Hilbert spaces and let ΠG be a finite-rank projector on G. For
any non-negative operator σEG on E ⊗G we have

F

(
σEG,

(idE ⊗ΠG)σEG(idE ⊗ΠG)

tr
(
(idE ⊗ΠG)σEG

) )2

≥ tr(ΠGσEG) (S.23)

and

F
(
σEG, (idE ⊗ΠG)σEG(idE ⊗ΠG)

)
≥ tr(ΠGσEG) . (S.24)

Proof. Let |ψ〉 be a purification of σEG then by Uhlmann’s theorem [Uhl76] we find

F

(
σEG,

(idE ⊗ΠG)σEG(idE ⊗ΠG)

tr
(
(idE ⊗ΠG)σEG

) )2

≥ (〈ψ|ΠG|ψ〉)2

tr
(
(idE ⊗ΠG)σEG

) = tr(ΠGσEG) (S.25)

and

F
(
σEG, (idE ⊗ΠG)σEG(idE ⊗ΠG)

)2 ≥ (〈ψ|ΠG|ψ〉)2 = tr(ΠGσEG)2 . (S.26)

We next prove a basic statement about converging projectors that is used several times in the proof
of Theorem 2.1.

Lemma 12.2. Let E be a separable Hilbert space and let {Πe
E}e∈E be a sequence of finite-rank projectors

on E which converges to idE with respect to the weak operator topology. Then for any density operator
σE on E we have lime→∞ tr(Πe

EσE) = tr(σE).

Proof. By assumption the Hilbert space E is separable which implies that any state σE can be written
as σE =

∑
i pi|xi〉〈xi|, where pi ≥ 0,

∑
i pi = 1 and {|xi〉}i is an orthonormal basis on E. As the

sequence {Πe
E}e∈N weakly converges to idE , we find

lim
e→∞

tr(Πe
EσE) = lim

e→∞

∑
i

pi〈xi|Πe
E |xi〉 =

∑
i

pi lim
e→∞
〈xi|Πe

E |xi〉 =
∑
i

pi〈xi|idE |xi〉 = tr(σE) , (S.27)

where the second step uses dominated convergence that is applicable since |〈xi|Πe
E |xi〉| ≤ |〈xi|idE |xi〉|

for all e ∈ N.

Let E and G be separable Hilbert spaces and let S denote the set of bipartite density operators on
E⊗G with a fixed marginal σG on G. Let {Πe

E}e∈N be a sequence of projectors with rank e that weakly
converge to idE and Se be the set of bipartite states on E⊗G whose marginal on E is contained in the
support of Πe

E and whose marginal on G is identical to σG.

Lemma 12.3. For every σEG ∈ S there exists a sequence {σeEG}e∈N with σeEG ∈ Se that converges to
σEG with respect to the trace norm.

Proof. For σEG ∈ S, let

σ̄eEG :=
(Πe

E ⊗ idG)σEG(Πe
E ⊗ idG)

tr
(
(Πe

E ⊗ idG)σEG
) , (S.28)
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which has the desired support on E, however, σ̄eG 6= σG in general. This is fixed by considering

σeEG := tr
(
(Πe

E ⊗ idG)σEG
)
σ̄eEG + |0〉〈0|E ⊗ trE

(
(Πe⊥

E ⊗ idG)σEG(Πe⊥
E ⊗ idG)

)
G
, (S.29)

where |0〉E is a normalized state on E. Since the partial trace on E is cyclic on E we obtain

σeG = trE(σeEG) = trE
(
(Πe

E ⊗ idG)σEG(Πe
E ⊗ idG)

)
+ trE

(
(Πe⊥

E ⊗ idG)σEG(Πe⊥
E ⊗ idG)

)
= trE

(
(Πe

E ⊗ idG)σEG
)

+ trE
(
(Πe⊥

E ⊗ idG)σEG
)

= trE(σEG) = σG . (S.30)

By the multiplicativity of the trace norm under tensor products and since ‖A‖1 = tr(
√
A†A), the triangle

inequality implies that

‖σ̄eEG − σeEG‖1 ≤ 1− tr
(
(Πe

E ⊗ idG)σEG
)

+
∥∥trE

(
(Πe⊥

E ⊗ idG)σEG(Πe⊥
E ⊗ idG)

)∥∥
1

= 1− tr
(
(Πe

E ⊗ idG)σEG
)

+ tr
(
(Πe⊥

E ⊗ idG)σEG
)

= 2
(
1− tr(Πe

EσE)
)
. (S.31)

Lemma 12.2 now implies that lime→∞ tr(Πe
EσE) = 1. We note that the sequence {σ̄eEG}e∈N converges

to σEG in the trace norm since by the Fuchs-van de Graaf inequality [FvdG99], Lemma 12.1 and
Lemma 12.2

lim
e→∞

‖σEG − σ̄eEG‖1 ≤ lim
e→∞

2
√

1− F (σEG, σ̄eEG)2 ≤ lim
e→∞

2
√

1− tr(Πe
EσE) = 0 . (S.32)

Combining this with (S.31) and the triangle inequality proves that {σeEG}e∈N converges to σEG in the
trace norm.

13 The transpose map is not square-root optimal

As discussed in Section 7 (see main document), for pure states ρABC it is known [BK02] that

F (A;C|B)ρ ≤
√
F
(
ρABC , TB→BC(ρAB)

)
(S.33)

holds for TB→BC the transpose map. In this appendix we show that (S.33) does not hold for all mixed
states. Let dimA = dimB = dimC = 2 and consider the state

ρABC =
1

2
|0〉〈0|A ⊗ |0〉〈0|B ⊗ |0〉〈0|C +

1

8
|1〉〈1|A ⊗ idBC . (S.34)

The transpose map satisfies

TB→BC(|0〉〈0|B) =
5

6
|00〉〈00|BC +

1

6
|01〉〈01|BC and TB→BC(|1〉〈1|B) =

1

2
|10〉〈10|BC +

1

2
|11〉〈11|BC .

(S.35)

If we consider a recovery map RB→BC that is defined by

RB→BC(|0〉〈0|B) = |00〉〈00|BC and RB→BC(|1〉〈1|B) =
1

3
(|01〉〈01|BC + |10〉〈10|BC + |11〉〈11|BC) ,

(S.36)

we find F (ρABC ,RB→BC(ρAB)) > 0.9829 and
√
F (ρABC , TB→BC(ρAB)) < 0.9696, which shows that

(S.33) cannot hold since F
(
ρABC ,RB→BC(ρAB)

)
≤ F (A;C|B)ρ.

This does not show that one cannot prove a non-trivial guarantee on the performance of the transpose
map relative to the optimal recovery map, but it suggests that such a guarantee would have to be worse
than the square root (and actually worse that the fourth root as well using another example), or
perhaps it is more naturally expressed using a different distance measure (using similar examples, the
trace distance does not seem to be a good candidate, either). We further note that this example does
not show that Equation (1.2) is wrong for the transpose map.
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